SiliToxi – Potenciál kremíka na zmiernenie toxicity arzénu a antimónu pri kultúrnych rastlinách
Potential of silicon for mitigation of arsenic and antimony toxicity in agricultural crops
Program: APVV
Zodpovedný riešiteľ: RNDr. Luxová Miroslava CSc.
Annotation: Contamination by arsenic (As) and antimony (Sb) is not only a serious environmental problem in highly-industrialized countries of the world, however also in Slovakia, mainly due to mining and power industry. The sites contaminated by these elements can be found across the whole Slovakia, from Malé Karpaty Mountains, Horná Nitra region, Liptov region to surrounding of Košice city in east Slovakia. As and Sb belong to toxic and dangerous elements for all living organisms. Despite an intensive research in the last years there is still only limited knowledge about the effect and phytotoxicity of As and Sb, and especially on interaction of toxic (As, Sb) and beneficial (Si) metalloids in plants what is the research aspect of this project. Therefore, the main aim of this project is to obtain a complex characterization of beneficial effects of Si on toxicity of individual elements and their combination on molecular-biological, biochemical, anatomical-morphological and physiological level. As a model object, important agricultural crops will be investigated.
Duration: 1.8.2018 – 30.6.2022
Úloha kremíka v metabolických a biochemických procesoch rastlín vystavených stresu z toxických a potenciálne toxických prvkov
The role of silicon in metabolic and biochemical processes of plants exposed to stress induced by toxic and potentially toxic elements
Program: VEGA
Zodpovedný riešiteľ: RNDr. Fialová Ivana PhD.
Annotation: Contamination of soil and water with heavy metals and metalloids is a worldwide problem today. The beneficial effect of silicon for optimal plant performance and agricultural crops exposed to various types of abiotic stress (studied in our previous projects) have been reported by several authors, though the mechanism of its action is still not fully understood. The aim of the project is to study the mechanisms of action of exogenously applied silicon on the defense responses of the selected cultivars of maize (or other crops – wheat and sunflower) exposed to toxic (As, Sb) and potentially toxic (in excess) essential elements (Cu) on metabolic and biochemical levels. We will focus on growth, physiological processes (membrane damage, water intake and release, etc.), changes in nitrogen metabolism and its possible connection with antioxidant mechanisms (glutathione-ascorbate cycle), as well as non-enzymatic and enzymatic components of the antioxidant defense system in individual organs of experimental plants.
Duration: 1.1.2021 – 31.12.2024